Solutions » All Solutions » Paper: COVID-19 Knowledge Graph: a computable, multi-modal, cause-and-effect knowledge model of COVID-19 pathophysiology
12

Paper  COVID-19 Knowledge Graph: a computable, multi-modal, cause-and-effect knowledge model of COVID-19 pathophysiology

Information

Keyword(s) COVID-19
Author(s) Daniel Domingo-Fernandez

Paper

The past few weeks have witnessed a worldwide mobilization of the research community in response to the novel coronavirus (COVID-19). This global response has led to a burst of publications on the pathophysiology of the virus, yet without coordinated efforts to organize this knowledge, it can remain hidden away from individual research groups. By extracting and formalizing this knowledge in a structured and computable form, as in the form of a knowledge graph, researchers can readily reason and analyze this information on a much larger scale. Here, we present the COVID-19 Knowledge Graph, an expansive cause-and-effect network constructed from scientific literature on the new coronavirus that aims to provide a comprehensive view of its pathophysiology. To make this resource available to the research community and facilitate its exploration and analysis, we also implemented a web application and released the KG in multiple standard formats.

Link

https://bikmi.covid19-knowledgespace.de

Submitted by

Name Daniel Domingo Fernandez
Organization Fraunhofer SCAI
Get in touch with Daniel Domingo Fernandez

Use the following form to contact the contributor. Your e-mail address and name will be sent to the contributor so that he/she can reply to you directly.

Back to list